Orden de operaciones aritméticas (PEMDAS) y su aplicación en lenguajes de programación.

Todo un clásico en las redes sociales es que alguien comparta la operación 5+4/3-1*2 y que se monte un gallinero tremendo en los comentarios con distintas soluciones. Esto se debe a que mucha gente no tiene claro cómo va la jerarquía de las operaciones y el orden de evaluación de las mismas.

Si hablamos de operaciones básicas, y de la mayoría de lenguajes de programación (Javascript, PHP, Python, Ruby, C,Visual Basic, Java…), nos regiremos por el orden de operaciones conocido por el acrónimo inglés PEMDAS, que en castellano podríamos traducir como PAPOMUDAS (PAréntesis, POtencias, MUltiplicación, División, Adición, Sustracción). En base a esto el orden de operaciones en lenguajes de programación como Python, PHP, Ruby o Javascript sería:

  1. Paréntesis
  2. Potencias y radicales
  3. Multiplicación, división, división entera y módulo.
  4. Suma y resta.

En este enlace puedes comprobar los resultados de distintas operaciones realizados en distintos lenguajes de programación. Puedes copiar los siguientes ejemplos para comprobar que el resultado es el mismo.

Aquí el código en Javascript:

var resultado = 5+4/3-1*2;
console.log(resultado);

Aquí el código en Python:

resultado = 5+4/3-1*2
print(resultado)

Aquí en Java:

public class Test {
  public static void main(String[] args){
    System.out.println(5.0+4.0/3.0-1.0*2.0);
  }
}

Y aquí en C:

void main(void) {
   double resultado;
   resultado = 5.0+4.0/3.0-1.0*2.0;
   printf("%f",resultado);
}

Como puedes comprobar, en todos el resultado es 4.333333 ya que todos usan el mismo orden para las operaciones.

Anuncios

Cálculo del logaritmo y logaritmo neperiano en Javascript.

Ayer me mandaban este chiste por Whatsapp:

Y como soy así de tocahuevos, que hasta llevo un reloj calculadora Casio, les mandé de vuelta el resultado del logaritmo neperiano de 1437. Y sí, estoy escribiendo esto para cuando me lo vuelvan a mandar, para contestar con este enlace, que me vale tanto para la sección de programación como para la de ciencia.

El elcálculo de logaritmos es la operación inversa a la exponenciación de la base del logaritmo. El desarrollo de calculadoras y ordenadores ha hecho que las tablas de logaritmos, que se usaban hace años para simplificar operaciones complejas, hayan perdido mucha importancia para los estudiantes de matemáticas en la actualidad. Este blog nos da una entrada muy intersante sobre el uso de los logaritmos.

La clase Math de Javascript tiene varias funciones para calcular un logaritmo. Para el logaritmo natural (logaritmo cuya base es el número e, un número irracional cuyo valor aproximado es 2,7182818284590452353602874713527):

//vamos a calcular el logaritmo de 5
var logaritmo = Math.log(5);

¿Y para obtener el logaritmo en base 10?

//vamos a calcular el logaritmo de 5
//pero con base decimal
var logaritmo = Math.log10(5);

¿Y para obtener el logaritmo en base 2?

//vamos a calcular el logaritmo de 5
//pero con base binaria
var logaritmo = Math.log2(5);

¿Y el logaritmo neperiano? Bueno, en lenguaje coloquial suele llamarse logaritmo neperiano al logaritmo natural, pero si nos ponemos precisos son dos conceptos disintos. El logaritmo neperiano, nombrado en honor del matemático John Napier, se calcularía con la fórmula -107*ln(x/-107):

//vamos a calcular el logaritmo neperiano
//de 5.
var logaritmo = Math.pow(-10,7)*Mat.log(5/Math.pow(-10,7))

Como puedes ver los logaritmos neperianos son esencialmente logaritmos naturales con la coma desplazada siete posiciones hacia la derecha y el signo invertido.

Diferencia entre muestra y población.

Población y Muestra son dos términos usados en estudios de estadística, similares y relacionados. Por dicha similitud tienden a ser confundidos, por lo que es importante que sepamos diferenciarlos para no tomar, literalmente, la parte por el todo.

La población, también llamada universo, es un conjunto de elementos sobre los que se realizan estudios y observaciones. Se trata de una variable o magnitud aleatoria con unas determinadas características comunes. Es, en resumen, el conjunto formado por todos los elementos a estudiar. Pero hay casos en los que el total de la población adquiere una magnitud demasiado extensa para ser estudiada. Por ejemplo, si queremos hacer un estudio sobre la salud cardiovascular en la Unión Europea no podemos pretender usa datos de todos los ciudadanos con historiales médicos.

La muestra es una selección abarcable de parte de una población para su estudio. Por definición, la muestra se siempre una parte de la población. Esta debe ser representativa, por lo que el método de selección debe ser adecuado (preferiblemente aleatorio) para evitar acabar teniendo un muestra sesgada que nos de un resultado irreal (decía un catedrático en estadística que un muestreo suficientemente torturado puede demostrar cualquier cosa). Siguiendo el ejemplo anterior, si hacemos el estudio sobre salud cardiovascular eligiendo solo a gente de entre 20 y 30 años y lo repetimos después con gente de más de 70, el resultado obtenido será radicalmente distinto.

Si la selección del muestreo es adecuada el resultado del estudio sobre una muestra será más preciso que al realizarlo sobre el total de la población, dado que trabajamos sobre un conjunto de datos más pequeño y esto nos permitirá minimizar errores.

En resumen: La población es el total de individuos o elementos que queremos estudiar y la muestra es una selección aleatoria de elementos de esa población que utilizaremos para trabajar de forma más precisa.

Diferencia entre media, mediana y moda

La media, la mediana y la moda son términos estadísticos que se usan para la comprensión de tendencias centrales cuando analizamos un conjunto de valores.

La media aritmética o promedio es especialmente útil cuando tratamos con distribuciones regulares. Se calcula mediante la suma de todos los valores observados dividida entre el número de observaciones. Pierde utilidad cuando se trata de distribuciones muy irregulares, con mucha diferencia. El ejemplo clásico de esto: si yo me como un pollo y tú no comes nada la media es que nos hemos comido medio pollo por cabeza.

La mediana es el valor numérico central de un conjunto de números, y es más útil cuando tratamos con distribuciones irregulares. Para su cálculo necesitamos ordenar toda la serie de valores de menor a mayor. Tras esto, en caso de que el número total de valores sea par, la mediana se calcula sacando el promedio de los dos valores centrales. En el caso de que sea una cantidad impar de valores la mediana será directamente el valor central.

Finalmente la moda es la incidencia más repetida en un conjunto de valores. Esto implica que puede haber más de una moda. Es útil cuando lo relevante es conocer el valor más común.

Veamos un ejemplo: imaginemos que tenemos un grupo de cinco amigas y vamos a calcular la media, mediana y moda de sus salarios anuales. Una cobra 12.000 euros, otra 15.000, otra 300.000 y hay dos que cobran 18.000.

La media sería el resultado de (12.000+15.000+300.000+18.000+18.000)/5, que es 72.600 euros. Como ves, al haber un valor tan alejado del resto dispara la media muchísimo.

Para la mediana vamos a ordenar los valores: 12.000|15.000|18.000|18.000|300.000. Al ser impar ya nos quedamos con el valor central, que sería 18.000 euros.

Finalmente para la moda miramos cual es el valor más repetido, que son también 18.000 euros ya que está dos veces en la lista.

Si crees que esto no es útil para el día a día piénsalo mejor, comprender bien estos conceptos nos permite abordar de forma más crítica muchas informaciones económicas que nos dan desde la prensa o desde los gobiernos.

Youtube de calidad: canales con contenidos interesantes (Volumen 2)

 

Hace unas semanas os presentaba una entrada que titulé Youtube de Calidad, donde recomendaba varios canales con contenidos educativos o técnicos. Material que va más allá de lo que la mayoría de canales que solo aportan contenidos irrelevantes. Hoy vamos a ver una segunda entrega de este Youtube de calidad viendo una serie de nuevos canales:

Narraciones de la historia: Realmente los contenidos de este canal serían más adecuados para el formato podcast que para el de Youtube, pues como su nombre indica se trata de una recopilación de narraciones realizadas sobre una imagen fija recogiendo el material de un programa de radio. La filósofa colombiana Diana Uribe, especializada en divulgación histórica, es quien se encarga de realizar estos contenidos. El canal lleva abandonado un par de años, pero Uribe ha seguido activa subiendo sus vídeos al canal Casa De La Historia y en el de Historia del Mundo.

Snag Films: Se trata de una iniciativa veterana que lleva funcionando desde 2008. Snag Films es un sitio web que ofrece documentales y películas independientes respaldados por publicidad. Además del canal de Youtube que os adjunto arriba tienen una web con todavía más material. Hay todo tipo de documentales: naturaleza, deporte, ciencia, literatura, música…

Educatina: Se definen a si mismo como “El Canal de educación más grande de América Latina“. Si bien su plataforma educativa es de pago en su canal de Youtube encontrarás vídeos educativos sobre distintas materias.

Terminal Root: En la entrega anterior algunas personas se quejaron de que hubiera puesto una página con vídeos en portugués (no les indignó que hubiera también alguna con vídeos en inglés, curiosamente). He tomado buena nota de sus quejas, después he impreso dicha nota en papel y la he depositado en el triturador de documentos. Terminal Root es un canal de Youtube brasileño dedicado a Linux, con vídeos en portugués donde podréis encontrar tutoriales prácticos dedicados al sistema operativo del pingüino. También, en su página oficial, ofrecen cursos de Linux.

Lasmatematicas.es: Vamos a acabar con un canal español donde un abnegado profesor de matemáticas ofrece lecciones on-line de esta materia, realizando también emisiones en directo de vez en cuando (por ejemplo, antes de la selectividad para repasar el temario). Útil tanto para estudiantes de la ESO y de Bachillerato como para todo aquel que quiera mejorar sus habilidades con las matemáticas.

 

 

 

Introducción al álgebra booleana: ¿Qué es?

El álgebra booleana es una estructura algebraica que esquematiza las operaciones lógicas, tomando su nombre de George Boole quien fue el primero en definirla como parte de un sistema lógico en 1847, en un intento de utilizar las técnicas algebraicas para tratar expresiones de la lógica proposicional.

El Álgebra de Boole es un conjunto “A”, provisto de dos operaciones binarias AND, OR, una operación unaria NOT y dos elementos 0 (Falso) y 1 (Verdadero), de forma que para todos los elementos a, b y c del conjunto A, se cumplen los siguientes axiomas:

Asociatividad:
a OR ( b OR c ) = ( a OR b ) OR c
a AND ( b AND c ) = ( a AND b ) AND c

Conmutatividad:
a OR b = b OR a
a AND b = b AND a

Absorción:
a OR (a AND b)=a
a AND (a OR b)=a

Distribuitividad:
a OR (b AND c)=(a OR b) AND (a OR c)
a AND (b OR c)=(a AND b) OR (a AND c)

Complementación:
a OR NOT a = 1
a AND NOT a = 0

Como en una computadora digital hay sólo dos posibilidades, usar el 0 o bien el 1 para representar el objeto más pequeño e indivisible, el álgebra booleana se convierte en una de las herramientas fundamentales de la computación y de la electrónica. Todos los datos se reducen finalmente a combinaciones de bits y los circuitos electrónicos permiten que estos recursos de almacenamiento se comuniquen entre sí. Un bit en una parte de un circuito se transmite a otra como voltaje. Por ello se necesitan dos niveles de voltaje: un voltaje alto que comunique el 1 y un voltaje bajo que comunique el 0. Fue Claude Shannon, en 1938, el primero en darle esta utilidad para simplificar circuitos conmutadores.

Operación AND.
La operación AND es exactamente igual a una multiplicación normal por lo cual sus reglas son las siguientes:

  1. Solamente si todas las entradas son 1 la salida será 1.
  2. Cuando una o más entradas sean 0 la salida será 0.

En el caso de una compuerta AND en un circuito electrónico esta opera en tal forma que su salida es ALTA sólo cuando todas sus entradas son ALTAS. En todos los otros casos la salida de la compuerta AND es BAJA.

Operación OR:
La operación OR es básicamente una suma y sus reglas son las siguientes:

  1. Produce un resultado de 1 cuando cualquiera de las variables de entrada es 1.
  2. Produce un resultado de 0 solo cuando todas las variables de entrada son 0.

En el caso de una compuerta OR opera en tal forma que su salida es ALTA si la entrada A, B o ambas están en un nivel lógico 1. La salida de la compuerta OR será BAJA si todas sus entradas están en el nivel lógico 0.

Operación NOT:
La operación NOT también se conoce como inversión o complementación, básicamente nos devuelve el valor complementario al que tengamos. Es decir, si A es igual a 0 entonces NOT A sería uno 1.

En el caso de un circuito electrónico NOT este siempre tiene una sola entrada y su nivel lógico de salida es contrario al nivel lógico de esta entrada.

SQL-Server: Calcular el descuento compuesto

Tras un mes de parón por temas varios volvemos con energía al blog. Vamos a dar por finalizado el capítulo dedicado a los descuentos y la aplicación de sus fórmulas en consultas de SQL-Server mirando el que nos queda, el descuento compuesto. Del descuento racional y del comercial ya hablamos en entradas pasadas.

El descuento compuesto es la operación inversa de la capitalización compuesta: si descontamos un capital utilizando el descuento compuesto, y el importe obtenido lo capitalizamos (capitalización compuesta) aplicando el mismo tipo de interés y plazo, obtenemos el importe inicial.

La fórmula para obtener el descuento sería la siguiente:

D = C0 * (1 – (1 + d) ^ -t )

Siendo C0 es el capital inicial en el momento t=0, d la tasa de descuento que se aplicará y t el tiempo que dura la inversión.

Para obtener el capital final la fórmula sería:

Cf = C0 * ( 1 + d ) ^ -t

Siendo C0 es el capital inicial en el momento t=0, d la tasa de descuento que se aplicará y t el tiempo que dura la inversión.

Entonces ¿cómo llevamos esto a una consulta SQL? Supongamos que, como en el ejemplo anterior, tenemos una tabla llamada TablaCreditos con los campos Valor (con el capital inicial en formato money), Descuento (en formato Numeric(5,2)) y Tiempo (en formato int). La consulta sería:

--Descuento
Select Valor * (1.00-POWER((1.00+Descuento),Tiempo)) as DescuentoCompuesto from TablaCreditos
--Capital final
Select Valor * POWER((1.00+Descuento),Tiempo) as CapitalFinal from TablaCreditos